1.	Proton A) C)	ema in the life c Diploid Dihaploid	ycle of Funar	ia is B) D)	Haploi Merod					
2.	Spore (A) C)	dispersal in mos Columella Peristome teeth	•	sible by B) D)	Opercu	ulum of these				
3.	temper	reservation of rature			d out	using li 0^{0} C	quid	_	at -20	
1.	Endosj A) B) C) D)	Pre fertilization Post fertilization Pre fertilization Pre fertilization Post fertilization	n product and lead to product and a product and a	diploid triploid						
5.	Lichen A) C)	s living on rock Saxicolous Terricolous	s are called	B) D)	Cortico Halico					
5.	When A) C)	two ecosystems Habitat Ecotone	overlap each	other, the B) D)	ne area i Niche Ecotyp					
7.		tly (2013) Gove tone from the fo Valley of Flowd Nicobar Islands	ollowing: ers	ia notif B) D)	ied one Nanda Seshac	Devi	re rese	erve. Cho	ose	the
3.	The modern synthetic theory of evolution is the consortium of the work by a number of scientists namely T. Dobzhansky, R.A. Fisher, J.B.S. Haldane, Swall Wright, Ernst Mayr, and G.L. Stebbins. Name the two theories in Science that are combined to form the synthetic theory of evolution?									
	A)	Darwin's Theor Disuse								
	B)	Mendel's Theor Phylogeny				•				
	C) D)	Darwin's Theoretical Lamarck's Lamarck	•					•	-	

Repeats Phylogeny

- 9. DNA supercoiling is the over- or under-winding of a DNA strand, and is an expression of the strain on that strand. This helical winding of DNA molecules is removed by the activity of an enzyme
 - A) DNA polymerase

B) DNA primase

C) DNA helicase

D) DNA topoisomerase

10. Match the List I with II

List I	List II
A.Population	i. Large naturally occurring community of flora & fauna occupying a major habitat
B.Biocoenoosis	ii. Assemblage of all the individuals belonging to different species occurring in the same geographical area
C.Ecosystem	iii. Group of similar individuals belonging to the same species found in an area
D.Biome	iv. Interaction between the living organisms and their physical environmental components
	v. Classification of species assemblage based on the type of environment

A)	A- v, B- ii, C- iii, D- i	B)	A- iv, B- i, C- ii, D- iii
C)	A- iii, B- ii, C- iv, D-i	D)	A- ii, B- iii, C- iv, D- i

- 11. Okazaki fragments are short, discontinually newly produced DNA fragments that are formed on the lagging template strand during replication of DNA. These DNA fragments are sealed by which one of the following enzyme?
 - A) RNA primase
 - B) DNA ligase
 - C) Single strand binding proteins
 - D) DNA polymerase
- 12. Coding region of an mRNA is 336 nucleotides long, including the initiator and termination codons. Predict the number of amino acids in the protein translated from this m RNA?
- A) 109 B) 110 C) 111 D) 112
- 13. The protective covering of radicle in monocot seeds is called
 - A) Coleoptile

B) Coleorrhiza

C) Scutellum

D) Aleurone layer

14. Match the List I (interaction) with List II (character) using the codes given below the Lists:

List – I	List – II
I) Incomplete dominance	1) Human skin colour
II) Codominance	2) Purple colour in maize due to anthocyanin
III) Polygenes	3) Human being belonging to AB blood group
IV) Complementary genes	4) Pink colour in 4 O' clock plant

		- 1		
(റ	a	ρ	•
\sim	v	u	\sim	

	I	II	III	IV
A)	4	3	1	2
A) B)	3	4	2	1
C)	4	3	2	1
D)	3	4	1	2.

- 15. A Ti plasmid is:
 - A) A vector that can transfer recombinant genes into plant genomes
 - B) A vector that can be used to produce recombinant proteins in yeast
 - C) A vector specific to cereals like wheat and rice
 - D) All of the above
- 16. Which among the following is a naturally occurring hormone?
 - A) Zeatin

B) 2,4-D

C) Benzyl adenine

- D) Indole-3-butyric acid
- 17. Observe the following statements related with various biological process and their structural components. Which one of the following is NOT a correct statement?
 - A) Manganese forms the structural core of chlorophyll
 - B) Iron is a structural component of porphyrin rings
 - C) Boron plays major role in translocation of sugars
 - D) Molybdenum regulates nitrogen fixation
- 18. The scientists who proposed the system of classification called as Neo-Adansonian system are
 - A) Engler & Prantl
 - B) Bentham & Hooker
 - C) Sokal & Sneath
 - D) Camp & Gilly
- 19. Sporophyte of *Riccia* is protected by
 - A) Indusium

B) Calyptra

C) Endothecium

D) Amphithecium

20.	Meiosis is a specialized type of cell division which reduces the chromosome number by half. This process occurs in all sexually reproducing eukaryotes (both single-celled and multicellular) including animals, plants, and fungi. Which of the following statements about meiosis is NOT true?
	 A) Kinetochores of sister chromatids attach to opposite poles in Meiosis I B) Kinetochores of sister chromatids attach to opposite poles in Meiosis II C) Chiasma is formed in Prophase I D) Homologous chromosomes are segregated in Meiosis I
21.	 The site for coupled oxidation-reduction reactions in the chloroplast is the A) Outer chloroplast membrane B) Inner chloroplast membrane C) Thylakoid space D) Stromal space
22.	Which one of the following pairs is mismatched? A) Tundra: permafrost B) Coniferous: evergreen trees C) Prairie: deciduous forest D) Savanna: Acacia
23.	Auxin namely IAA, is present in all parts of a plant, although in minute quantities. The structure of this hormone is related to which one of the following amino acids? A) Glutamic acid B) Aspartic acid C) Threonine D) Tryptophan
24.	Stomatal movement in leaves of well-watered plants grown in natural environment is significantly controlled by Light. Which one of the following wavelengths of light is responsible for such regulation? A) Red light B) Blue light C) Green light D) Far-red light
25.	Pharmacogenomics deals with A) Interaction of two molecules B) Protein sequencing C) Genetic Variations and responses to drugs D) All of the above
26.	Commensalism is a class of relationships between two organisms. An example of the species interaction called commensalism is A) Nitrogen-fixing bacteria in association with legume plant roots. B) A microbe in living human gut.

C)

27.	J I								
	A) Naked DNA								
	B)	Single strand		1.1					
	C)	Two chromati	-	ed by a c	centron	nere			
	D)	A single chron	matia						
28.	DNA is due	is not hydrolyz to	ed by a	ılkali wł	nereas l	RNA is	readily hydrol	lyzed. T	he reason
	A)	The double he	elical st	ructure (of DNA	Α			
	B)	The presence							
	C)	Due to feature					em-loop struct	tures	
	D)	The presence	of 2'-C)H group	ın RN	A			
29.		n among the formics?	ollowin	g correc	etly de	picts the	e chromosom	e comp	lement of
	A)	2n+1	B)	2n-1		C)	2n-2	D)	2n+2
30.	DNA	replication take	s place	during					
	A)	G1 Phase	B)	G2 Ph	ase	C)	G0 Phase	D)	S Phase
2.1	3371.1.1		1	NOT		1 1	49		
31.	Which A)	n of the followin A nucleoside					te? DNA	D)	RNA
	A)	A liucieoside	D)	Alluci	conde	C)	DNA	D)	KINA
32.		membranes a porins. Follow orins:							
	a. b. c. d. Which	Aquaporins for Aquaporins for The aquaporing The aquaporing one of the following the f	orm tetr ns also j ns are p	ramers in permit the resent o	n the ce he mov nly in l	ell memberement on igher p	orane of charged part lants		,
	A)	a, b and c			B)	b, c an	nd d		
	C)	a, c and d			D)	a, b ar			
	_								
33.		nbinant DNA n	nay be 1	nserted			•		
	A)	Transfection			B)	Transl			
	C)	Transduction			D)	Antine	e above		
34.		cheese is mad es of the mold.				-	_		
	A)	Penicillium ci			B)		llium commu		
	C)	Penicullum re	oquefor	tii	D)	Penici	llium purpuro	genum	
35.	The fo	ormation of pro	duct by	Δ11oste	ric enzi	umes is	regulated by:		
33.	A)	Competitive i			B)		ompetitive inl	nibition	
	C)	Feedback inhi			D)		npetitive inhib		
	-,				- ,		r		

36.	Which	n among the following lack sex		
	A)	Ascomycetes	B)	Basidiomycetes
	C)	Deuteromycetes	D)	Oomycetes
37.	The fit A) B) C) D)	Covalently join two ends of a Covalently join the ends of the Connects RNA strands to DN All the above	wo sing	
38.	Resur	rection plant is a species of		
50.	A)	Usnea	B)	Selaginella
	C)	Cycas	Ď)	Sargassum
	,		,	
39.		icant phytochemicals in the	plants. thways ways acid pat	
40.	_	•	e availa	ble. Identify the cloning vector capable
		insert size upto 3000 KB?	D)	G
	A)	Phage	B)	Cosmid
	C)	BAC	D)	YAC
41.	Accor A) B) C) D)	All DNA molecules contain to Single stranded RNA molecules	the sam tles con	nt of G equals the amount of C. e proportions of A, C, G and T tain same amount of A and U nt of T equals the amount of C
42.		rence of Himalayan floral ened by which hypothesis? Continental Drift Theory Deccan Trap Hypothesis Himalayan Glaciations Theo Coromandel Coast Hypothes	ry	in Western Ghats of India is best
43.	How of A) B) C) D)	do the bacteria save its DNA fr Bacterial DNA has no restric Modification enzymes inacti DNA is protected by methyla Restriction enzymes are not p	tion site vates thation	ne restriction sites

44.	The tandard A) B) C) D)	axonomic designation called Tautonym used for referring to Same name for both the genus and species Same name for species and subspecies Trinomial nomenclature The name of the author for the species						
45.	Inulir A)	Glucose and galactose	B)	haride consisting of repeated units of: Galactose				
	C)	Glucose	D)	Fructose				
46.	Trans	Transpiration in plants are regulated by a pigment known as						
	A)	Crypto chromes	B)	Carotenoids				
	C)	Cytochromes	D)	Phytochrome				
47.	Mass	scale production of vitamin B	32 is car	ried using the fungus				
	A)	Penicillium chrysogenum	B)	Aspergillus niger				
	C)	Ashbya gossypi	D)	Trichoderma harzianum				
48.	Engler and Prantl system is one of the phylogenetic classifications. They classified							
	A)	All tracheophytes						
	B)	All plants						
	C)	All seed plants						
	D)	Thallophytes, bryophytes ar	nd Pteri	dophytes				
49.	The c	class of fungi to which the con	nmon m	nushroom, puffballs and truffles belongs				
	A)	Ascomycetes	B)	Basidiomycetes				
	C)	Oomycetes	Ď)	Deuteromycetes				
50.	Identify the correct sequences of the trend in the evolution of thallus in algae?							
	A)	,						
	B)							
	C)	,						
	D) Unicellular -Filamentous -Colonial – Heterotrichous							
51.	Name the algal group that contain the predominating pigment fucoxanthin, laminarin as reserve food is							
	A)	Rhodophyceae	B)	Chryophyceae				
	C)	Phaeophyceae	D)	Cyanophyceae				
52.	A frai	A frame shift mutation is						
	A)	A point mutation in which a	single	base pair is inserted or deleted				
	B)	When one base is replaced l						
	C)	*	•	d but remains in the same overall				
	D) A mutation that inactivates the gene completely							

53.	Groups of genes with similar function that arose by multiple rounds of duplication are called			
	A)	Genomes	B)	Gene families
	C)	Operons	D)	Quasi genes
54.	The ef A) B) C) D)	fect of increasing humidity on Rate of transpiration will dec Rate of transpiration will incommend Initially low then it will be his It will be unaffected	rease rease	transpiration would be
55.	Corym A) C)	nb is a racemose inflorescence Mimosoideae Caesalpinioideae	and is a B) D)	a characteristic feature of the Family Papilionoideae Apiaceae
56.	Identif A) C)	fy the type of stain which on ic Acidic Stain Anionic Stain	onizatio B) D)	n gives positively charged molecules Basic Stain Basic Mordant
57.	follow			blicate dominant gene interaction, the 5:1. How many genes control the trait Two Polygene
58.	,	oid developed from two differ	,	
50.	A)	Triploid	B)	Autopolyploid
	C)	Allopolyploid	D)	Monoploid
59.	The Upresen	-	racter (of the family caryophylaceae is the
	A)	Betalain	B)	Glycosides
	C)	Terpenes	D)	Alkaloids
60.		termine the variation in style ent places which would be the Chi-square F-test		of carpel of Hibiscus plant from five tistical test? Student t-test Regression analysis
61.		Mendelian law of Independer osome during	nt asson	rtment is due to the arrangement of
	A)	Anaphase-I	B)	Anaphase-II
	C)	S-Phase	D)	Cytokinesis
62.		ale is a product of		
	A)	Inter specific cross	B)	Inter generic cross
	C)	Intra specific cross	D)	Intra generic cross
			8	

63.	Multi	ple effects of a single gene is	known a	as
	A)	Polyploidy	B)	Heterosis
	C)	Pleiotropy	D)	None of these
64.	bisex nume seeds	ual flowers, one-chambered rous ovules, stamens are pre	ovary co	axil of the leaf, radially symmetrical, omposed of three to five carpels with ow the ovary, born in androgynophore, ules or berries. Name the family that
	A)	Passifloraceae	B)	Vitaceae
	C)	Cucurbitaceae	D)	Oleaceae
65.	The reaso A)		_	for which of the following
	B)			made from endangered tigers
	C)			use to more renewable energy sources
		to reduce the anthropogenic	greenho	ouse effect
	D)	-	C's, foun	d to be causing depletion of the ozone
		layer		
66.	The a	ntibody known to be responsi	ible for a	llergic reaction is:
	A)	IgG	B)	IgA
	C)	IgM	D)	IgE
67.		h of the following molecule Kreb's cycle?	acts as c	connecting link between EMP pathway
	A)	Pyruvic acid	B)	Acetyl CoA
	C)	Phosphophenol Pyruvate	D)	Ribulose bis phosphate
68.	Most	stable kind of RNA is		
	A)	mRNA	B)	tRNA
	C)	rRNA	D)	snRNA
69.	Antis	ense technology		
	A)	Selectively blocks gene exp	ression	
	B)	Helps in gene expression		
	C)	Always keeps genes inactiv	ated	
	D)	Always keeps genes expres	sed	
70.		ucture which arises from the letely in post fertilization stage		and surrounds the ovule more or less
	A)	Aril	B)	Caruncle
	C)	Sarcotesta	D)	Operculum
71.	The f	amily that display Pseudo Em	ıbryo Sa	e is
	A)	Podostemaceae	B)	Polygonanceae
	C)	Piperaceae	D)	Portulacaceae

	self-p	ollinated crop			
	A)	Mass Selection	B)	Pedigree analysis	
	C)	Germ line selection	D)	Pure line selection	
73.	A		haploi	d cells undergo chromosome doubling?	
	A)	Doubled Haploid	B)	Selective Haploid	
	C)	Artificial Aneuploid	D)	Diplo-haploid	
74.	Vital	stains are used for			
	A)	Staining of dead tissue outsi	de the b	oody	
	B)	Staining of a living cell inside			
	C)	Staining of a fixed cell outs	ide the b	oody	
	D)	Staining of a dead tissue ins	ide the	body	
75.	An H	fr strain of <i>E. coli</i> contains:			
	A)		al origin	which is used to make many copies of	
		a particular DNA sequence			
	B)	A bacterial chromosome wi		<u> </u>	
	C)	A bacterial chromosome wi			
	D)	A human chromosome with	a transp	posable element inserted	
76.	Red rust of coffee is caused by while red rust of tea by				
	A)	Ustilago & Puccinia			
	B)	Albugo & Puccinia			
	C)	Cephaleuros & Albugo			
	D)	Hemileia & Cephaleuros			
77.				associated with the sorting of lipids	
	-	roteins for various cellular fur		are	
	A)	Rough endoplasmic reticulu	m		
	B)	Lysosomes			
	C)	Vesicles			
	D)	Golgi complex			
78.				vood through its physical structure and	
		up. Which among the followi			
	i. Ma	ahogany ii. Oak iii. Te	eak	iv. Walnut	
	A)	i & ii	B)	i, ii & iii	
	C)	i & iii	D)	i, ii, iii & iv	
79.				em that is maintained by leaf traces,	
				us interruptions in the stem vascular	
				sociated with one leaf gap is known as	
	A)	Unilacunar node	B)	Trilacunar node	
	C)	Multilacunar node	D)	Polyaxial node	

Choosing the best and most uniform of organisms for subsequent generations of a

72.

80.		t the correct option from the factorious as heterotrichous green alga.	ollowin	g. One is an example of a colonial and				
	A)	Ulva & Coleochaete	B)	Chlamydomonas & Ulothrix				
		Volvox & Coleochaete		•				
	C)	volvox & Coleochaete	D)	Sargassum & Pandorina				
81.		amount of living matter presented is known as	sent in	a population at any time in the given				
	A)	Net productivity	B)	Gross primary productivity				
	C)	Standing crop	Ď)	Standing state				
82.	Anthr	racosis is a serious lung diseas	se assoc	iated with inhaling				
o 2 .	A)	Cotton dust B) Polle		C) Coal D) Fibers				
		, ,,,_,,,						
83.		chondrial DNA is advantageou		·				
	A)	A) It is inherited only through the female parent and thus evolves in a way that allows trees of relationship to be easily constructed						
	B)	It is inserted into the X chro						
	C)	It first appeared in humans						
	D)	It evolves more slowly than						
	D)	it evolves more slowly than	the gen	ies in the nucleus				
84.	Algae have diverse roles. Which among the following are the economically							
	_	important products of the red algae?						
	A) 1	1 1						
	agent for bacterial media.							
	B)	Calcium carbonate						
	C)	Nitrogen fixation						
	D)	Both A & B						
85.	The	The sporocarp of ascomycetes have high diversity in their characters. Name the						
05.		ng body in Xylaria	ve mgn	diversity in their characters. Name the				
	A)	Cleistothecium	B)	Perithecium				
	C)	Apothecium	D)	Gymnothecium				
	,	•	ŕ	•				
86.	The stele in <i>Marsilea</i> rhizome is an example for							
	A)	Amphiploic Siphonostele	B)	Meristele				
	C)	Amphixylic Siphonotele	D)	Dictyostele				
87.	Irish famine occurred in 1845 is associated with							
	A)	Phytophthora	B)	Albugo				
	C)	Chondrus crispus	D)	Penicillium				
0.0	XX 71 * *	1	1 .	I' 1 0				
88.		Which statement given below is true about lichens?						
	A) Algal component always enheathed by fungal mycelium							
	,	B) Both components occur side by side						
	,	C) Algae and fungal cells are intermixed						
	D)	Fungal mycelium envelop a	ugai cel	IS				

89.	Which among the following is a		or fossil bryophyte?			
	A) Pogonatum	B)	Naiadita			
	C) Lejeunea	D)	Both B & C			
90.	Apomixis is defined as reproduction by asexual reproduction by		acement of the normal sexual thout fertilization. The process is			
	A) Hans Winkler	B)	Smith			
	C) Bower	D)	Farlow			
91.	liquid that turns to a transparen allowed to evaporate and is obta	t yellowish n ained from	iscous, sticky, colourless or yellowish nass when the essential oils have been			
	A) Pinus	B)	Abies			
	C) Cedrus	D)	Taxus			
92.	The tendency of ecotone to contain a greater number of species and higher population density is known as					
	A) Niche	B)	Ecotype			
	C) Edge effect	D)	Carrying capacity			
93.	Black rust of wheat is caused by	ý				
	A) Pucciniagraminis	B)	Pucciniarecondita			
	C) Pucciniastriformis	D)	Pucciniaglumarum			
94.	Enzymes responsible for alcoholic fermentation					
	A) Ketolase	B)	Zymase			
	C) Peroxidase	D)	Oxidase			
95.	outer whorls usually introrse. Ova sometimes surrounded by the recependulous ovule.	f glands at the y valves, usual ry unicarpella	base of the filaments, Anthers with lly from the base upwards, in the two			
	A) Solanaceae	B)	Dipterocarpaceae			
	C) Lauraceae	D)	Myrsticaceae			
96.	The principle light- trappir Cyanobacteria is	ng pigment	molecule in plants, Algae, and			
	A) Chlorophyll a	B)	Chlorophyll b			
	C) Porphyrin	D)	Rhodapsin			
97.		produce a highle? d light micro py	ques relies on the specimen interfering gh contrast image without the need for scopy			

98.	The to	ital amount of water pre	sent in					
	A)	Holard		B)	Capillary wa	ter		
	C)	Chesard		D)	Echard			
99.	Which	is a true statement abo	ut ribos	somes?				
	A)	Ribosomes contain Di	VA and	protei	n.			
	B)	Ribosomes are active	in carbo	hydra	te synthesis.			
	Ć)	Ribosomes are present		-	•	caryotes.		
	Ď)	Ribosomes are only for					ulum in	
	,	prokaryotic cells.				•		
100.	Name	Name the Scientists who constructed the prototype electron microscope in 1931						
	A)							
	B)	Eli Franklin Burton, C	ecil Ha	ll, Jam	es Hillier, and	Albert Prebus	3	
	C)	Dennis Gabor, & Leo						
	D)	Ernst Lubcke of Sieme	ens & F	Ialske				
101.	Hybrid	Hybridoma technique was first demonstrated by						
	A)	Kohler and Milstein		B)	Robert Koch			
	C)	'D' Herelle		D)	Land Steiner			
102.	Comp	lete reduction of archeg	onium	is obse	rved in the gyr	nnosperm		
	A)	Gnetum B)	Cycas		C) Ginks	go D)	Pinus	
103.	Assun	ning Hardy-Weinberg	g equ	ilibriu	m, the gei	notype frequ	uency of	
	hetero	zygotes, if the frequen	ncies of	f the t	wo alleles at	the gene bei	ng studied	
	are 0.6	and 0.4, will be:						
	A)	0.80 B)	0.64		C) 0.48	D)	0.32	
104.	Recently, the major reason for worldwide loss of species from the natural habitats							
	is?							
	A)	Habitat destruction		B)	Intraspecific			
	C)	Random mating		D)	Viral outbrea	ıks		
105.	A homeotic mutation is one which:							
	A) Is present in only one form in an individual							
	B) Substitutes one body part for another in development							
	C)	Results in developmen						
	D)	Is wild type at one ten	nperatui	re and	abnormal at an	other		
106.	_	Eusporangiate ferns are those where the sporangia arise from group of epiderma						
	cells.	Identify the eusporangia	te fern	from t	he choices give	en below		
	A)	Dicranopteris		B)	Matonia			
	C)	Equisetum		D)	Osmunda			
107.	Which one of the following bacterium is commonly employed for production of							
	_	enic plants?						
	A)	Escherichia coli		B)	Bacillus thur	-		
	C)	Staphylococcus aureu	S	D)	Agrobacteriu	ım tumefacien	S	

108.	Identify the abnormal base pairings noticed in "wobble" codon-anticodon binding?							
	A)	Adenosine-uracil	B)	Guanine-uracil				
	C)	Cytosine-inosine	D)	Guanine-thymine				
109.	Whic	h of the following is TRUE a						
	I.	During activation of G-protein, subunit of the G-protein dissociates from the activated G-protein to activate adenyle cyclase						
	II.	During activation of G-protein, the active α subunit is terminated by the hydrolysis of the bound GTP caused by GTPase						
	III.							
	IV. The ratio of G-protein coupled receptor to G-protein is 1:1							
	A)	I only	B)	II only				
	C)	III only	D)	II and IV only				
110.	Which type of Genetic Analysis method can detect the presence of a gene but is not useful for single base pair changes?							
	A)	Genetic Sequencing	B)	Western Blot Analysis				
	C)	Southern Blot Analysis	D)	Cytogenics				
111.		e the mitotic stage that is un ochore microtubules?	ique an	d is characterized by the shortening of				
	A)	Metaphase	B)	Anaphase				
	C)	Prophase	D)	Telophase				
112.	Name	e the triplet codons which is a	chain to	ermination codon?				
	A)	UGU B) AAU	J	C) UUG D) UAG				
113.	The terminology employed to denote species is restricted to a specific area is known as							
	A)	Sibling species	B)	Allopatric species				
	C)	Sympatric species	D)	Endemic species				
114.	Whic	h one of the following immur	oglobu	lins is found as pentamer?				
	A)	IgG	B)	IgM				
	C)	IgA	D)	IgE				
115. The sum total of an organism's interaction with the biotic and ab its environment is called its			with the biotic and abiotic resources of					
	A)	Habitat	B)	Logistic growth				
	C)	Ecological niche	D)	Microclimax				
116.	Which of these ecosystems accounts for the largest amount of Earth's primary productivity?							
	A)	Open ocean	B)	Savanna				
	C)	Tundra	D)	Salt marsh				
	-)	** ***	,					

117.		philia is a sex-linked recessive philic, but the mother is normal X^hX^h X^HX^H		h humans. If a father and the son are enotype must be: $X^{H}X^{h}$ $X^{h}Y$
118.		root cultures for secondary morming plant cells with Agrobacterium tumefaciens Bacillus thurigiensis Agrobacterium rhizogens E.coli plasmids	etabolito	e production are induced by
119.		ors are molecules that induce s lant derived elicitor from the g Chitin Pectic acid		ry metabolite production. Identify the tions Pectin Cellulose
120.	Following are few statements for regeneration of plants from explants/tissues. (1) Cytokinin is required for shoot development. (2) Auxin is required for shoot development. (3) Auxin to cytokinin ratio is very important. (4) Jasmonic acid is required for both root and shoot development. Which of the following combinations of above statements is true? A) (1) and (3) B) (2) and (4) C) (1) and (4) D) (2) and (3)			